

Light
Sheet
Microscopy

Principles of imaging and construction

Bill Chaudhry MRCP PhD

Dublin November 2013

I. PRINCIPLES

II. SYSTEM COMPONENTS III. EXAMPLES

The 4WD microscope?

	xy-resolution	z- resolution	Depth	Detection Speed	Photo toxicity	User Skills
Stereo	poor	±	Mega	poor	low	Low
Epifluorescence	Excellent	Good	Good	Good	low	Fair
LS confocal	Outstanding	Outstanding	Good	Good	High	High
Multi-photon	Very good	Good	Super	Good	High	High
Sheet-light	Excellent	Excellent	Excellent	Excellent	minimal	High

conventional

Concept of Sheet Light Imaging

Top view

Specimen Characteristics

Unobstructed optical path in-and-out at 90 degrees

Optically transparent

Fluorescent label

Immobile

Smallish

Live or fixed

Drosophila

OpenSpim.org

Cellular spheroids

Zeiss

Arabidopsis thaliana

Zebrafish embryo

Near confocal resolution...

...wide field of view

light sheet: 540 X410 μm Lens: 16x 0.8NA

Image: 1340 x1024px

250µm

Minimal phototoxicity

Confocal scanning light microscopy

Multiple exposures
One z image

Sheet light

Unique specimen orientation

Zeiss Z1 – light sheet from both sides

Advantages of sheet light

Vital: No fixation artifacts

Safe: minimise phototoxicity

Deep: mm

Long: days

Fast: sCMOS camera

Sharp: near confocal resolution

• Wide: large field of view

Orthogonal sheet Objective lens Sample

Huisken Development 2009

Huisken *Development* 2009; **136**(12); 1963 Keller *Science* 2009; **322**:1065

I. PRINCIPLES

II. SYSTEM COMPONENTS

III. EXAMPLES

Components of LS microscope

- Sheet of light
- Camera
- Chamber
- Sample that moves
- Control system

Greger, Swoger, Stelzer.Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Inst. 2007:78;023705

OpenSpim.org

Zeiss z1

Lasers

Light Amplification by Stimulated emission of Electromagnetic Radiation

Coherent light source – focused to a tight spot, low divergence

Beam conditioning

Single mode optical fiber Light takes on properties of fiber

Spatial filter: Kepplerian telescope with pinhole at focus "blocks" stray waves)

At least 40% power loss

Beam shaping

Digital light sheet

Possible to produce sheet by waving the laser beam (galvo mirror)

Possible to use structured light to improve resolution

Classical light sheet

Easiest way is a cylindrical lens in combination with the objective

Cylindrical lens overcomes the objective in one plane Slit controls width of beam entering

OpenSpim.org

Stripes

Coherent light causes interference patterns in sample.

Solution:

- Less coherent light!
- 2. Wobble the sheet:

Santi 2009

Cameras

Pretty much any camera will work!

QI Click CCD

Cheaper, Firewire Peltier cooling

Hamamatsu ORCA CCD

More expensive More sensitive

Scientific CMOS cameras

Very sensitive

Massive chip area

Expensive

Very fast

Specialist interface

Difficult - programming, data flow, rolling/global shutter Limited by disc –write speed

Capture every photon

Dichroics and fluorochromes

Camera arrangement

IR gating 848nm 23mW LED

Sample chambers

OpenSpim.org design

Water dipping lenses

mechanically secured 'O' rings

Persepex chamber

Sample chamber

Anodised aluminium chamber
Peltier cooling
25W Resistors and commercial heater controller
Fluid and gas exchange

Stage stepper motors

PI micro –translation stage 50nm resolution Repeatable (same direction) 25mm travel Programmable (Newport – better?)

Specimen mounting

Huisken Development 2009

Plasticine plug

Programming

Quite hard!

Labview (National Instruments): Instrument control

C – camera drivers

Matlab – data processing

Imaris – data visualisation

Amira – data visualisation

ImageJ/Fiji: Total package for OpenSpim.org

Computers are unreliable with timing

Not a problem with 'slow' applications Labview – real time application TTL signal communication

TTL pulse width/delay Junction box

OpenSPIM: www.openspim.org

An Open Access platform for Selective Plane Illumination Microscopy (SPIM).

OpenSPIM: Everything you need

OpenSpim.org

Sheet light quiz

Q1 Can you make things?

- a. Able to make things
- b. I know someone who can
- c. No

Q2 Optical physics?

- a. Spatial filters, optoacoustic modulators...
- b. snooker and reading glasses
- c .Don't know physics

Q3 Programming?

- a. Labview, Matlab, C, Java...
- b. Scripting -macros
- c .Prefer to click and go

Q4 Money or parts?

- a. No, but can dismantle
- b. Yes, but only about 20k
- c .Yes, enough for a confocal

If you scored mostly:

- a's. Make your own design
- b's. OpenSpim.org.
- c's. Zeiss Z1

I. PRINCIPLES

II. SYSTEM COMPONENTS

III. EXAMPLES

Ernst Stelzer

Science 322, 1065 (2008)

Pavel Tomancak

Nature Methods 6, 435 - 437 (2009)

Fly – technology development

Jan Huisken

Development. 2008;135:1179-87

Typical Images

Raw

25um —

Genetic Medicine

Tg{cmcl2:gfp;fli1:gfp} 48hpf Neo - 100fps, 4ms, 512x512 488nm, 1mW

Sheet light: summary

Laser-sheet wide field imaging

Near confocal 3D optical sectioning

Non-phototoxic, time lapse, multichannel

Implementation can be straightforward

The art is of specimen mounting

Genetic Medicine Acknowledgements

Institute of Genetic Medicine Deborah Henderson

Mathematics and Statistics Peter Andreas

Institute of Neuroscience Vincent Willey

