

Challenges in Light Sheet Microscopy?

Emmanuel G. Reynaud

University College Dublin, Ireland

Summary

- Young and confusing
- Energy, time and space
- Sample preparation
- Image processing
- Data Deluge
- Conclusion

The acronym war...

LS: Light Sheet or LISH **UM: Ultramicrosope OPFOS:** Orthogonal Plane Fluorescence Optical Sectioning LSP: Light Scanning Photomicrography SPIM: Selective (or Single) Plane Illumination Microscopy TLSM: Thin laser light sheet microscope **DSLM:** Digital Scanned Laser Light Sheet Microscope LSFM: Light Sheet based Fluorescence Microscopy (very close to LSM???) **OCPI:** Objective Coupled Planar Illumination microscopy **OPM: Oblique Plane Microscopy TSLIM:** Thin-Sheet Laser Imaging Microscope LSBM: Light-Sheet based Microscopy LISM: Light Sheet Microscopy Light Sheet Illumination Microscopy (LSIM)

Planar Illumination Microscopy (PIM), Azimuthal microscopy

But Light sheet microscopy is more often used...

Single Plane Illumination Microscopy

Light sheet illumination: optical sectioning no damage outside light sheet very low laser power

Detection with regular lens: focal plane overlaps light sheet water immersion or air lens variety of NA & magnification

Sample mounted e.g. in agarose: translation & rotation in medium / buffer physiological conditions

Chamber:

aqueous medium minimized aberrations temperature controllable perfusion (environment)

Single Plane Illumination Microscopy

Huisken J , Stainier D Y R Development 2009;136:1963-1975

Light Sheet Microscopy advantages...

Shorter time intervals	record images more often	5 fps instead of 1 fps	
Longer observation periods	record images for very long periods of time	days instead of hours	
More images per stack	improve z-sampling		
Higher signal to noise ratio	cameras provide excellent dynamic range	12 - 14 bits instead of 3 - 5 bits	
Improved resolution	resolution determined by NA not statistics	isotropic resolution 200 nm	
Excellent deconvolution		isotropic resolution 150 nm dynamic range 8 - 10 bits	
Multiple views	observe specimen not only from top	depending on specimen properties 2 – 18 stacks	
Life time imaging	take advantage of high dynamic range	record more frequencies distinguish more lifetimes	

SPIM and friends

LSFM possibilities

SPIM and friends

Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nature Biotechnology

SPIM and friends

Light Sheet Illumination F...techniques

- FRAP (Fluorescence Recovery After Photobleaching)
- Laser Nanosurgery
- FLIM (Fluorescence Life-Time Imaging)
- -Structured illumination
- **STED** (Stimulated Emission Depletion microscopy)
- FCS (Fluorescence correlation spectroscopy) and FCCS
- STORM, PALM...
- Adaptive optics
- Cell biology applications up to weeks

The Open SPIM to travel with..

Торіс	Subtopic	Sample/Model Organism	Technique/ LSFM implementation	Reference
Physics	Technical set up of MISERB	Fluorescent beads	MISERB	Fahrback et al, 2010
	Structured illumination	Mouse cochlea	sTSLIM	Schroter et al, 2011
	Light Sheet Characteristics	Fluorescent beads	SPIM	Ritter et al, 2008
	Image formation	C. elegans	DSLM	Olarte et al, 2012
	Image View fusion	live sea urchin embryo, live Danio rerioembryo	LSFM	Rubio-Guivernau et al, 2012
Biochemistry	Laser Microsurgery	In vitro microtubules	SPIM	Engelbrecht et al, 2007
	Microtubule dynamic instability	In vitro microtubules	SPIM/DSLM?	Keller et al, 2008
	mRNA nuclear export	Chironomus tentans Salivary Glands	SPIM	Siebrasse et al. 2012
	Heterochromatin dynamics	MCDK cells. Drosonhila melanogaster	LSFM (FCS)	Canoulade 2011
	, Imaging of engineered gene expression		SPIM	Eismont at al. 2000
		Drosophila melanogaster	<u>.</u>	EJSMONT ET al, 2009
Microbiology	Marine microbiology	Various bacteria, protozoa etc.	LSEM	Fuchs et al. 2002
incrosiology	inaline inclosions,		20	1 4013 00 41, 2002
	Adaptive optics to improve imaging	Tumour spheroids	waoSPIM	
Cell biology	performance			Jorand et al, 2012
	Intracellular imaging	Mammalian cell organelles	Bessel beam plane illumination	Planchon et al, 2011
	Nuclear protein localisation	Cellular spheroids	SPIM	Zanacchi et al, 2011
	Imaging large living samples	MCDK cell cysts	SPIM	Verveer et al, 2007
Plant Biology	Live imaging of root growth	Arabidopsis thaliana	DSLM	Maizel et al, 2011
	Consecutive imaging of vertically growing root	Arabidopsis thaliana	SPIM	Sena et al, 2011
				,
Developmental Biology	Imaging of developing organs	Danio rerio heart valve	SPIM	Scherz et al, 2008
	Embryogenesis visualisation	Drosophila embryo	SPIM	Huisken et al, 2004
	Zebrafish development	Danio rerio	mSPIM	Kaufmann et al, 2012
	Cell identity lineaging and neurodevelopmental imaging	Caenorhabditis elegans	iSPIM	Wu et al, 2011
	Gene Expression: hour glass model verification	Drosophila melanogaster	SPIM	Kalinka et al, 2010
Physiology	3D reconstruction of inner ear	Cavia porcellus	OPFOS; LSFM	Hofman et al, 2009
	Brain in vivo imaging	Microspheres	miniSPIM	Engelbrecht et al, 2010
	3D reconstruction for morphological analysis	Bast's valve	OPFOS	Hofman et al, 2007
	Scan of whole brain	Mouse brain	LSFM	Mertz and Kim, 2010
	Neural network imaging	Mouse brain	Ultramicroscope	Dodt et al, 2007
	Sectioning of thick tissues	Mouse cochlea/zebrafish inner ear, brain/ rat brain	TSLIM	Santi et al, 2009
	Imaging neuronal activity	Mouse vomeronasal cells	OCPI	Holekamp et al, 2008
	Imaging of immunolabelled receptors	Mouse	SPIM	Klohs et al, 2008
	Optical sectioning	Meriones unguiculatus cochlea, Hippocampus reidi head, Xenopus laevis	OPFOS	Buytaert et al, 2012
Large organism general biology	Whole organism 3D reconstruction	Ormia ochracea; Emblemasoma auditrix	LSP	Huber et al, 2001
	Whole organism 3D reconstruction	Drosophila melanogaster	Ultramicroscope	Jahrling et al, 2010
	Imaging copepod gut contents	Calanus pacificus	PLIF	Jaffe et al, 2009

Light Sheet Illumination

- Architecture (upright, azimuthal...)
- Illumination (lens, scanner, Bessel beams...)
- LISH angle (90 degrees...)
- Add-ONS (nanosurgery, adaptive optics...)
- Camera numbers
- Drivers and computers

Light Sheet Use

- Single plane (FCS...)
- Single stack
- Multiview stacks
- + Time

Ultramicroscope

Whole brain imaging at cellular resolution 3D high speed imaging without bleaching High throughput phenotype screening

LAVISION BIOTECH

H. Siedentopf and R. Zsigmondy, Ann. Phys. 10, 1-39 (1903)

Light Sheet-based Fluorescence Microscope for long-term live imaging

Sample preparation

- The sample is a 3D object
- Different sizes and types of samples
- Mounting techniques
 - Embedded samples
 - Hanging samples
 - Flat samples
 - Enclosed samples
- Cell biology applications

The sample is a 3D object

- . Glass support
- . Fixed orientation
- . Fixative
- . Mounting media
- . Pressure...

Detection

- . Support from above
- . Rotation
- . Fixative
- . Objective

LSFM specificities

- -Objective (obstacle...)
- Hanging mounting (gravity...)

Different sizes

Different sizes and types of samples

- 2.5X, 5X, 10X, 20X, 40X, 63X, 100X
- Large samples (mm)
 - Mus musculus (brain)
 - Anopheles Gambiae...
- Mid range samples (μm)
 - Drosophila melanogaster ovaries
 - Cell clusters, cysts...
- Small samples (μm to nm...)
 - Saccharomyces cerevisae
 - Single microtubules

A few more points...

- Media (Air, water, PBS, oil...)
- Fixed or alive (Temperature, pH, drugs, anesthesia...)
- Labelling (Dyes, diffusion, penetration, washing...)
- Clearing (Penetration...)
- Accesibility (Size ratio (chamber, objective)...)
- Time (Stability, movements...)

Mounting techniques

Embedded samples

Embedded samples

Embedded samples

d. melanogaster pupa mounting

- dissection
- self alignment
- dissected organs, embryos...

Gelling agent related problems

-Optical properties

- light sheet penetration
- detection limitations
- aberrations

-Physical properties

- melting temperature
- gelling temperature
- air drying
- gelling stability

-Preparation

- purity
- air content
- homogeneity

-Gel properties

- Ashes
- Structure
- Diffusion

S.cerevisiae

Copepod

D.melanogaster head

D.melanogaster ovary

Fish embryosCell cystsSpheroids

. . .

c.elegans gut

Cell balls

Hanging samples

- Stability (rotation...)
- Contact
- Accesibility
- Live samples?

Flat samples

- Accesibility
- Rotation
- Contact

Flat samples

Planchon et al., 2011

MDCK cells cultured for 10 days in matrigel, inside an agarose beaker within Matrigel (37°C, 5% CO₂)

A. thaliana

- development and growth
- stability

Kaufmann, A et al, Development 139, 3242-3247 (2010)

- Diffusion
- Accesibility
- Rotation
- Assays

Keller et al, Nat. Meth, 2007

Cell biology applications

- Three dimensional growth conditions
- Support (scaffolds, matrices)
- Protocols
- Imaging fixed and live cells
- 3D culture chamber

SPIM-compatible perfusion chamber

Environmental control of the 3D culture

Image processing

- Stacks...
- Multiple stacks...
- Channels
- Time, gravity and movement
- Data deluge
- Registration
- Fusion
- Add-ons
- Artefacts (stripes, blurring)

3D data acquisition

light-sheet microscopy

single view

Image processing

С

D E F G

Image processing

1. Signal Degradation

3. Varying orientations of the optical sections4. Development of the specimen

2. Limited Overlap

5. Scaling introduced by refractive index change

Multi-View

- opaque/complex sample
- rotation to access ROIs
- compensate absorption
- combination allows reconstruction of details invisible in single stack, but require huge amounts of data (up to several hundred GByte) and heavy _____ processing ______

A Drosophila experiment...

- Multi-View acquisitions
- Multi-Channel acquisitions
- Time-lapse acquisitions
- Preview
- Compression?
- Acquisition speed is very high over 24 hours
- 5-50 fps @ 1 Megapixel (soon 4-8 Megapixel)
- 0,5-4 TB raw data per experiment
- 100s of terabytes of data

Welcome to Big Data Land!!!!

Multi-View

Nuclei in red Membranes in cyan

Jan Huisken Bioessays 34: 406–411

Examples of recombination

SPIMage fusion

Swoger, Huisken & Stelzer, Opt Lett, 2003 Verveer, ..., Stelzer, Nature Methods, April 2007 Swoger, ... & Stelzer, Opt Expr, 2007

OTF: large = high resolution

SPIMage processing: pollen

Autofluorescence of a Paper Mulberry pollen

Slices from 3D data sets

Figure by J. Swoger.

Raw, single view

Images are ~ 20 μm square

Fusion, 18 views (no deconvolution)

Fusion, 2 views Swoger, Huisken & Stelzer, 2003 Swoger, … & Stelzer , Opt Expr, 2007

Deconvolved, single view

Fusion, 3 views

Fusion, 6 views

Fusion, 18 views

A real example (single view)

Pre-processing

Image registration

Multi-view image alignment

Example

Registration fusion

Intensity based

- No embedding necessary
- Sample independent
- Typically slow
- Hard to cope with developing samples
- Result hard to verify automatically

Bead based

- Very fast
- Sample independent
- Easy use with developing samples
- Automatic verification
- Embedding in rigid medium

Segmentation based

- Potentially fast
- Automatic verification possible
- No embedding necessary

- Staining dependent

- Hard to cope with developing samples

P. Shaw et al., in *Biophysical Journal* 55, 1989. C. J. Cogswell et al., in Proceedings of SPIE, 1996. R. Heintzmann et al., in Analytical Cellular Pathology 20, R. Heintzmann et al., in Journal of Microscopy 206, 2002 J. Huisken et al., in Science 305, 2004. J. Swoger et al., in *Optics Express* **15**, 2007. P. Verveer et al., in Nature Methods 4, 2007.

Tomancak, in Nature Methods 7, 2010.

P. Keller et al., in Science, 2008.. P. Keller et al., in Nature S. Preibisch et al., in IEEE ISBI, 2008.

Bead based Registration Framework

Preibisch S., Saalfeld S., Schindelin J., Tomancak P., "Software for bead-based registration of selective plane illumination microscopy data", *Nature Methods* **7**(6), 2010.

What to remember...

- Which LISH do you have?
- Which sample do you want to image?
- Can you mount it?
- Plan your data flow!!!
- Plan your image processing!!! (scale it down first!!!)
- Enjoy!!!